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Abstract 

The closed-form expression of y'w(r), the second 
partial r derivative of the wide-angle correlation 
function of a monodisperse dilute system of particles 
shaped as spherical segments, is worked out. From 
this result, the explicit value, at r = 0, of the third 
derivative of the small-angle correlation function is 
obtained. The value differs from that obtained by the 
Kirste-Porod formula by a positive contribution, 
owing to the circular edge. 

I. Introduction 

The main assumption of small-angle X-ray scattering 
(SAXS) theory is that the electron density n(r) of the 
sample can be approximated by a discrete-valued 
function no(r), which, for greater simplicity, will be 
assumed to be two valued in the following (see, for 
example, Ciccariello, Goodisman & Brumberger, 
1988). From this assumption, it follows that the 
sample comprises two phases [i.e. the regions V~ and 
V2, where nn(r) is equal to n l and n2, respectively] 
and that the phases are separated by a surface, 
referred to as the sample interface. Some of the 
geometrical parameters of the interface can be 
obtained from the coefficients 9,'(0) and 3,'"(0) 
present in the asymptotic expansion of the SAXS 
intensity I(h) (see, for example, Porod, 1982):* 

i(h) = I(h)/ V( rl 2) 

= - [87ry'(0)/h 4] + [167ry'"(0)/h6] + . . . .  (1) 

In fact, Porod (1951) and Debye, Anderson & 
Brumberger (1957) found that y '(0)= - S x  
(4V~qb2)-~, where S is the area of the interface, 
while Kirste & Porod (1962) have shown that 

y'"(0) =~/(4vqh qh) (2) 

* The meanings of  the symbols present in (I), (2) and (4) are as 
follows: h--(4~-/,~)sin(0/2) is the momentum transferred to a 
photon,  of wavelength A, which elastically scatters by the angle 0; 
V is the volume of  the sample; (r/2) is the average of the squared 
electron-density fluctuation, defined as ~7(r) = no(r) - (n), with (n) 
denoting the average electron density of the sample; no( r )=  
ntpl(r) + n2P2(r), where p,(r) = 1 when r falls inside the region V, 
and p~--0 elsewhere; ~, = Vi/V is the volume fraction of the ith 
phase; & is a unit  vector. 
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3; "-= 1/(16) f dS[(3/R2)+(2/RmRM)+(3/R2)], (3) 
s 

where Rm and RM denote the principal-curvature 
radii (Stoker, 1989) of the interface. It should be 
remembered that y'(0) and y'"(0) denote the values~ 
at r = 0, of the first and third derivatives, respec- 
tively, of the SAXS correlation function, defined as 

y(r) = (47rV(~i2))-~ f ddo f dv,~7(rO~7(r, + r(o). (4) 
v 

[The first integral on the right-hand side (r.h.s.) of (4) 
is performed over all directions of t~.] Equation (3) 
requires that Rm and RM exist and differ from zero at 
each point of the interface. Therefore, interfaces 
must be assumed 'smooth' for (3) to make sense. On 
the other hand, for many samples, the best nn(r) 
choice might require that the interface have some 
regions of negligible thickness, where the minima of 
the absolute values of the principle-curvature radii be 
smaller than the highest spatial resolution attainable 
in SAXS experiments. In these cases, description of 
the interfaces as surfaces with sharp edges appears 
more accurate. For the same reason, sharp comers 
and contact points might also exist. Thus, there is the 
problem of determining the values of y'"(0) for 
interfaces with the aforesaid singularities. In general, 
the latter can be expected to give rise to a contri- 
bution,~, which, added to~', yields the exact y'"(0) 
value according to the relation 

4Vy"'(0) = y  +w. (5) 

4Vy ' " (0 ) ,~ ' - andJ  will be referred to henceforth as 
the 'roundness', 'curvosity' and 'sharpness', respec- 
tively, of the interface. The first denomination 
follows from the fact that - Vy'"(0) is the angular 
average of the so-called rotundity parameter 
(Wilson, 1971), first introduced by Mitra (1964) in 
wide-angle X-ray scattering (WAXS) theory (see 
below). The second follows from (3), which explicity 
relates ~ to the interface curvature radii. The third 
makes the origin of contribution .~ evident. The 
determination of.~, in principle, can be carried out 
using (3) when the interface shape is known. How- 
ever, the determination of the interface roundness, 
according to (5), requires that of the sharpness. The 
problem of determining the surface sharpness was 
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tackled first by Sobry, Ledent & Fontaine (1991) 
(these authors called this quantity the 'angulosity'). 
They analyzed the case of particles shaped as right 
prisms and found that, while the linear edges 
(between planar facets) have zero sharpness, corners 
have non-null sharpness. The latter expression has 
been explicity worked out for the case of a corner 
where three edges meet with two of the three angles 
formed by the meeting edges equal to 7r/2. More- 
over, these authors pointed out that the roundness of 
a right-circular cylinder, obtained from the relevant 
correlation function evaluated by Mrring & 
Tchoubar (1968), is equal to the curvosity. Thus, 
similar to the case of linear edges, the circular edges 
of right-circular cylinders do not contribute to the 
sharpness. However, this conclusion is in no way 
general. In fact, it has been recently shown (Cicca- 
riello, 1993) that the sharpness of the edges of a 
truncated circular right cone is 

S~= - 2zrtan2(a) = - 7r[cot2(fl) + cot2(zr -/3)], (6) 

where ~ is (hal0 the opening angle of the truncated 
circular right cone, while/3 = rr/2 - tr and zr - / 3  are 
the dihedral angles along the two circular edges of 
the truncated circular fight cone. Result (6) shows 
tha ty  = 0 only when the dihedral angles are equal to 
rr/2. Moreover, similar to the result obtained by 
Sobry et al. (1991) for the corners, the sharpness 
resulting from (6) is always nonpositive. Whenever 
this property, i.e. g <_ O, is generally true whatever 
the Gaussian curvatures of the intersecting surfaces, 

will always be an upper bound of the interface 
roundness and this result could be of some practical 
relevance. Unfortunately, it is not simple to obtain 
the general sharpness expression. Nevertheless, it can 
be shown that the aforesaid conjecture is not true by 

h ~ C 

- o r  ~x  

o 

Fig. 1. A typical configuration of  the set intersection of  the two 
spherical segments; ABCDV and A,B,C, DtV,. The latter was 
obtained by translating the former by r. The intersection curve 
is F - F~ U/"2, where F~ is the horizontal arc P~P2P3 a n d / ' 2  is 
the arc P3PP~. 

explicity evaluating the sharpness of the interface 
relevant to a monodisperse and very dilute sample of 
particles shaped as spherical segments (see Fig. 1). 
This shape is the simplest one where the circular edge 
results from the intersection of two surfaces of which 
at least one has a Gaussian curvature different from 
zero. 

This paper is devoted to the derivation of this 
result according to the following plan. First, §II 
reports the evaluation of the WAXS correlation 
function relevant to the aforesaid sample. It should 
be remembered that the WAXS correlation function, 
defined as 

yw(rfo)- vT~fpj(rl)pf(rl + r&)dv~, (7) 
V 

is the one-dimensional Fourier transform of the peak 
profile Ia(h) around reflection & (Wilson, 1949).* 
Recalling that liquid particles on a solid surface, 
which are in thermodynamical equilibrium with the 
vapor phase, have the shape of spherical segments 
(Rowlinson & Widom, 1982), we can see that it is 
likely that the metallic particles, growing on the 
support of metallic catalysts by a heat treatment of 
the latter (Brumberger, Goodisman & Ramaya, 
1990), also have the shape of spherical segments, 
because the physical mechanism governing the phase 
separation is, to a first approximation, the same. 
Thus, on the one hand, the determination of the 
peak profiles of a collection of spherical segments 
could be practically relevant, whenever the mono- 
dispersity condition is approximately met. On the 
other hand, the SAXS and the WAXS correlation 
functions are related by (Ciccariello, 1993) 

y(r) = -@fl@2 + (1/4¢r@E)fdfoyw(rfo), (8) 

so that, leaving aside the first constant term on the 
r.h.s, of (8), the former correlation function is the 
angular average of the latter multiplied by 1/@2. 
(Note that the index 1 has been assigned to the phase 
formed by the particles.) Actually, when the sample 
is very dilute, t ~  2 " -  1 and @1 = 0 and y(r) is simply 
the angular average of 7w(r(o). In this way, after 
having determined yw(r(o), it is possible to evaluate 
y"~(r&) [the third partial derivative of yw(rfo) with 
respect to r] and its limit value as r ~  0. The angular 
average of the derivative value, denoted by 3/'"o~(0), 
with respect to all possible directions of ~, yields 
3/'"(0+), which is proportional to the sample round- 
ness. On the other hand, the sample curvosity can be 
obtained from (3) and the sharpness of the sample 

* pi(r) is defined as equal to one when the tip of  vector r falls 
inside one of  the sample particles and equal to zero elsewhere. 
Thus, pj(r) coincides either with p~(r) or with p2(r), defined in the 
footnote to (1). V r is the sample volume occupied by the particles 
and t~ specifies the reflection direction. 
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follows immediately from (5). This task is performed function because the latter depends on r only.) The 
explicitly in § III.* further symmetry yw(r) = Y w ( - r )  implies that 

II. Second-derivative expression 

When the sample is very dilute and is made up of 
equal particles, the sample WAXS correlation func- 
tion coincides with the WAXS correlation function 
of a single particle given by 

y w ( r & ) -  v p l f  pp(rOpp(rl + r&)dvl, (9) 
v 

where Vp and pp(r) refer to the volume and to the 
characteristic set function, respectively, of a single 
particle. Thus, for the particle shape shown in Fig. 1, 
pp(r0 turns out to be equal to one only when rl 
fulfills the inequalities 

0 _< ~ol < 2rr, (10a) 

0 --< 01 ( i f ,  (10b) 

max(0, cos a) __ rl -< 1, (lOc) 

where r~, 01 and ~o~ are the polar coordinates of 
vector r~ = (x~, y~, z~) with respect to the coordinate 
system shown in Fig. 1. Note that the unit length has 
been taken equal to the spherical-segment radius and 
that (10c) follows from the hypothesis that the 
spherical-segment opening angle obeys 

y(r, 0 ) -  y(r, T r -  O) (12) 

and y(r, O) is completely determined once it is known 
in the angular range defined by ~, = 0 and 0 _< 0 _< 
rr/2. 

Equation (9) is an example of the oriented stick 
probability functions (oSPFs) discussed by 
Ciccariello (1985). Equation (III.4) of that paper 
gives the integral expression of the second derivative 
of any oSPF evaluated along two arbitrary directions 
li and f .  Thus, applying this formula to (9) and 
setting I£ = ~  = &, the integral expression of the 
second partial derivative of yw(r) with respect to r 
will be 

Vpy'w(r&) = - f (dSl  "~)f(dS2" ~)$(r, + rt~ - r2). 
S S 

(13) 

Here, dS,. (i = 1, 2) is a vector set at point r~ of the 
particle boundary S, orthogonal to the latter, point- 
ing externally to the particle and having length equal 
to the infinitesimal surface element dSi. 8 represents 
the Dirac function. The latter implies that the only 
points belonging to F, the curve intersection of the 
boundaries of the fixed and of the translated 
spherical segment, contribute to the integral. F does 
not exist when r > 2 sin a = A C (see Fig. 1). Thus, 

0 __ a --- 7r/2. (11) y"(r ,O)=O when r > 2 s i n a .  (14) 

The integral on the r.h.s, of (9) measures the volume 
of the region AtP3P2P1V shared by the given (or 
fixed) spherical segment ABCDV and by the 
spherical segment A t B t C t D t V  t obtained by translating 
the former by r = r&, with & - (cos~psin0, sin ~osin0, 
cos 8). It is geometrically evident that yw(r) does not 
depend on ~p, the longitudinal angle of r. Therefore, 
yw(r) will be written simply as y(r, 0). (The omission 
of the index W is justified by the fact that no 
confusion is possible with the SAXS correlation 

* The details of some algebraic manipulations are reported in 
Appendices A, B and C, which have been deposited with the 
British Library Document Supply Centre as Supplementary Publi- 
cation No. SUP 71055 (10 pp.). Copies may be obtained through 
The Technical Editor, International Union of Crystallography, 5 
Abbey Square, Chester CH 1 2HU, England. It is also emphasized 
that Appendix B corrects a wrong statement by Ciccariello (1985). 
In Appendix B, it is shown that, for the second derivative to have 
a finite discontinuity, the parallelism of the surface and of its 
translated image at a point is sufficient, while, contrary to the 
statement made by Ciccariello (1985), the orthogonality of the 
tangent plane to the translation vector is by no means required. 
The latter condition is necessary only for the discontinuity to 
survive in the second derivative of the SAXS correlation function. 
In fact, the angular average over all reflection directions in general 
washes out such a discontinuity, unless the locally parallel surfaces 
are orthogonal to the translation. 

At smaller r, two F configurations are possible, 
depending on whether A,, the point obtained trans- 
lating A by r, lies outside or inside the fixed spherical 
segment. In the first case (I), F is a parallel of the 
fixed spherical segment because it results from the 
intersection of the basis (i.e. the planar part) of the 
translated spherical segment with the round part of 
the fixed spherical segment. In the second case (II), F 
has the shape shown in Fig. 1 and comprises the arcs 
F~ = PIP2P3 and/ '2  = P3PP~. Let S denote the point 
intersection of the circle of radius r centered at A 
with the arc A VC and let O0(r) denote the angle 
formed by axis z' with the half-line AS. Clearly, 

Oo(r) = 7r/2- a + arcsin(r/2), (15) 

and configurations I and II occur when 

I 0 <_ 0 <- Oo(r) and r _< 2sin (a/2) (16a) 

II Oo(r) < 0___ 7r/2 and r_< 2sina.  (16b) 

[Note that in case I the existence of F requires a 
smaller range of distances because the basis of the 
translated spherical segment lies above the fixed 
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spherical segment when 2sin(a/2) _<r _< 2sin a.] The 
evaluation of integral (13) in cases I and II is 
explained in detail in Appendix A.* After 

di(r,O) = rcos0 + cosa,  (17a) 

D(r, O) = cos a + (r/2)cos 0, (17b) 

dl(r ,O)=(r /2)s inO - D(r,O)cotO, (17c) 

d2(r, O ) = D(r,O )/sin O, (17d) 

Rl(r ,  O) =-- [ 1 - d~(r, 0 )] '~,  (17e )  

Rz(r) = [ 1 - (r/2)2] '/2, (17f) 

and 

¢1(r, 0) = arccos[dl(r,O)/Rl(r,O)], (17g) 

¢2(r, 0) = arccos[d2(r,O)/R2(r)], (17h) 

have been set, the final expressions for y"(r ,O) in 
cases I and II, respectively, are 

Vpy['(r, 0) = 27rcos 2 0(cos a -I- r cos 0), (18a) 

Vp y~l' (r, 0 ) = [2di¢~ cos 2 0 + 2R~(sin 0 )(cos 0)(sin ¢ 0 ]  

+ [(r/2)¢2] 

= G](r,O) + G2(r,O). (18b) 

Here, Vp denotes the spherical segment volume given 
by 

Vp = It{1 - cosa  - [(1 - cos 3 a)/3]}. (19) 

The taper parameter L and the rotundity parameter 
M, introduced respectively by Wilson (1962) and by 
Mitra (1964) [see also Wilson (1971)], are defined as 
Z = v z 2 / 3  t t v b y ' (0+,0)  and M = - V p y '  ' (0+,0) .  Using 
(18), in case I (0 _< 0 _< rr/2 - a) and case II (7r/2 - a 
-< 0 -< 7r/2), one obtains 

and 

L I = Vp 1/327r(cos a )  cos  2 0, (19a) 

LII = 2 Vp V3(cos 0)[(sin 2 a - c o s  2 0 )1/2 
+ (cos a)(cos 0) arccos ( -  cot a /cot  0)], 

(19b) 

M I  = - 2~" cos 3 0 (20a) 

m n  = - 2 (cos  2 0){(cos  0 )  arccos ( -  cot a/cot 0) 

-- [(COS a ) ( s i n  2 a -- cos  20)I /2 /s in  2 a]}  

- (1/2)arccos[(cosa)/(sinO)]. (20b) 

Fig. 2 shows the behavior of these quantities for 
some values of a. [Note that the taper-parameter 
expression, obtained by Wilson (1969) for a hemi- 

* See deposition footnote. 

sphere, is immediately recovered if one sets a = zr/2 
in (19b).] Although (18) could be explicitly integrated 
in order to obtain the WAXS correlation function, in 
practice it is more convenient to know the peak 
profiles that can be directly obtained by (18). In fact, 
the peak profile around the reflection characterized 
by the polar angle 0 is 

O0 

Ie(h) = C V  1, f cos(hr)y(r, O)dr 
0 

t ~  

=(C/h2)[s(e)  - Vp f cos(hr)y"(r ,  8)dr]. (21) 
0 

[The last equality follows the performance of two 
partial integrations and the use of the result (Wilson, 
1949) that y ' ( 0 + , 8 ) =  - S ( 8 ) / V  m where S(O) is the 
area of the projection of the particle surface on a 
plane orthogonal to the reflection direction. C is a 
normalization constant such that Ie(0)= 1.] Fig. 3 
shows the peak profiles and their Porod plots 
(Ciccariello, 1990) for some O's. Details of the deter- 
mination of s ( e )  and the evaluation of (21) as well 
as a brief discussion of some features of the curves 
shown in Fig. 3 can be found in Appendix B.* 

m .  E d g e  c o n t r i b u t i o n  

The spherical-segment edge sharpness ~ will now be 
evaluated. By definition (3), ~'~ turns out to be given 
by 

= rr(1 - cosa),  (22) 

* See deposition footnote• 

L(O) 

o 

(5 

M(O) 

0.0 

I ' 1 " | "  I ' 1 " 1 "  I "  I ' 1 "  I ' l ' l "  I '  I '  I • 

:--- ...(~) 

" , \  

(b) , \  

. . . . . .  

0.5 ~ 1.0 1.S 

Fig. 2. The upper and lower sets of curves show the dependences 
of the taper and rotundity parameters, respectively, of the 
spherical segments on the reflection direction 0. Curves (a), (b) 
and (c) of each set are characterized by the opening angles: a = 
7r/3, I7"/4 and 7r/6, respectively. The decrease of the taper 
parameter with increasing a is evident. The rotundity curves 
shown coincide in the 0 range where (20a) holds true. Their 
shape, however, is such that their angular averages yield the 
same value as given by (24). 
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while y"'(0) can be evaluated from (18). In fact, reported in Appendix C.* The final result is quite 
from (8) and (9), simple: 

y"(r) = (4rr)- ~f y"(r,O)d(o 

Oo(r ) rrl2 

- f sinOy['(r,O)dO+ f sinOy~;(r,O)dO. 
0 Oo(r) 

ThUS, 

y'"(O +) = lim (°°°) ,--o+\ fo sinOy["(r,O)dO 
-n-/2 

+ f sinOy~['(r,O)dO 
Oo(r) 

+ O~(r)sin Oo(r){y~'[r, Oo(r)] 

- , / i ; [ r ,  Oo(r)]}). 

The term inside the curly brackets vanishes because 
,/~'[r, 0o(r)] continuously matches y~;[r, 0o(r)]. In the 
limit r----0, it gives Oo(r)~ Ir/2 - a and 

rr/2 - a 

y'"(O+) = f sinOy;"(O+,O)dO 
0 

rr/2 

+ f sinOy~;'(O+,O)dO. (23) 
~-/2 -- a 

The evaluation of the first integral is trivial. That of 
the second requires quite a lot of algebra owing to 
the derivative's involved expression. The details are 

I~(h) 

- i l i l l l l l l l i l l l | l l l l | l l  

/ " , ,  
/ \ 

~. \, t x /"  Xx , - 

\ ( )  k " ' -  : 

\, i a)l \ 
,,'~,\ \ (b) - 

/ \ x . .  x --"~ 
tl . k 

1o. 2o. h 30. go. 

Fig. 3. Curves (a), (b) and (c) are the peak profiles (normalized to 
60 for drawing convenience) of the spherical segment, charac- 
terized by a -- ~'/4, along the directions 0 = 37r/7, ~'/3 and rr/6, 
respectively. (It is recalled that the distance unit is such that R, 
the spherical-segment radius, is equal to one, while h is in units 
R-I.) Curves (a'), (b') and (c') give the corresponding Porod 
plots, i.e. h2Io(h) versus h. [Note that these curves refer to the 
normalization Io(0) = 1.] 

4Vpy"'(O+) = 2rr. (24) 

Though the volume of the generic spherical segment, 
given by (19), depends on a, it is remarkable that the 
r.h.s, of (31) is independent of a. Thus, the rounded- 
ness of a spherical segment is equal to that of the 
complete sphere. Comparing (24) with (22) and 
recalling (5), one obtains the sharpness of a spherical 
segment: 

J ( a )  = "n'(1 + cosa). (25) 

This quantity, in contrast to cases of truncated 
circular right cones (Ciccariello, 1993) and of right 
prisms (Sobry et al., 1991), is always positive. More- 
over, in contrast to cases of right cylinders, it does 
not vanish when the dihedral angle a is equal to 7r/2. 
Therefore, it appears reasonable that the sharpness, 
in general, will depend on both the dihedral angle 
and the Gaussian and squared mean curvatures of 
the surfaces on the edge of intersection. It is hoped 
that the former results may give a hint when the 
unknown general integral expression for J is sought. 
In any case, the positiveness of (25) shows that 
does not yield an upper bound of the exact y"'(0) 
value. 

Finally, the aforesaid evaluation of the second 
derivative of the WAXS correlation function, i.e. (9), 
can be performed also in the case of a spherical 
segment characterized by an opening angle a larger 
than rr/2, although more angular ranges must be 
considered when r is not very small. However, when 
r = 0, it is rather simple to show that the sharpness is 
still given by (25), which, in fact, yields a vanishing 

J f o r  a= r r .  

The author is grateful to Mr A. Rampazzo for 
kindly having drawn Fig. 1. Financial support from 
MURST through 40% and 60% Funds is also 
acknowledged. 
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Abstract 
Correlation lengths and defect-strength parameters, 
related to the separations and magnitudes of dis- 
continuities in imperfect crystals, are obtained from 
X-ray rocking curves using a stochastic model of 
crystal defects. The model describes the diffraction of 
X-rays from an imperfect crystal containing surfaces 
of defects, such as stacking faults, and misoriented 
crystal grains. The two defect parameters provide a 
measure of crystal quality. A method of extracting 
the parameters from rocking curves is described in 
the limit of kinematic X-ray diffraction. The method 
is applied to X-ray diffraction data obtained from 
thin films of CdTe and Hgl _xCdxTe grown on GaAs 
substrates. The ability of the model to fit the X-ray 
data is a test of the stochastic model. 

Introduction 
X-ray diffraction is used extensively to measure the 
quality of thin crystalline films grown by techniques 
such as molecular-beam epitaxy and metalorganic 
chemical vapour deposition. A single parameter, the 
full width at half-maximum of the Bragg reflection, is 
the usual measure of the crystal quality. However, 
many theories of X-ray diffraction from imperfect 
crystals involve two parameters related to the nature 
of the imperfections (Zachariasen, 1967; Kato, 1980; 
Becker & AI Haddad, 1990; Davis, 1992). Therefore, 
it should be possible to obtain a better measure of 
the crystal quality by extracting two parameters from 
the X-ray data. 

The stochastic model of X-ray diffraction 
developed by Davis (1992) describes the mean reflec- 
tivity from an imperfect extended-face crystal con- 
taining surfaces of defects and misoriented crystal 
grains. These defects produce discontinuities in the 
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strain and strain gradients in the crystal. The model 
contains two parameters: a defect-'strength' param- 
eter, tr, and a correlation length, l. The correlation 
length is defined by a correlation function and is the 
distance over which the correlation between the 
phases of the diffracted X-rays falls by 1/e. If the 
width of the Bragg reflection, related to b t2 = o,2/21, is 
chosen as one independent measure of the crystal 
quality, then a possible choice for the second 
independent parameter is the correlation length. 

The aim of this paper is to verify that the 
stochastic model can fit X-ray data from a number of 
thin films and to demonstrate the method by which 
the two defect parameters may be obtained. The 
model is applied in a kinematic limit to X-ray data 
sets obtained from thin films of CdTe and 
Hgl_xCdxTe grown on GaAs substrates. In the 
following sections, the stochastic model is briefly 
reviewed, the method for fitting the model to the 
data is described and the experiments and their 
results are discussed. 

Theory 
The stochastic defect model for X-ray diffraction 
from imperfect crystals is based on a form of the 
Takagi-Taupin equations (Takagi, 1962,  1969; 
Taupin, 1964). The main aspects of this model are 
summarized below. For a complete description of the 
model the reader is referred to Davis (1992). 

For thin films in which the change in the ampli- 
tude of the transmitted wave is small, a kinematic 
solution for the complex reflectance R(t) at depth t is 

t t 

R(t) = e x p [ -  i2a f fl(t')dt']f iaxh(t') 
0 0 

t' 

x exp [i2a f f l ( t")dt"]  dt', (1) 
0 
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